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ABSTRACT

A theory is developed for the steady aerodynamic loading

on a ducted propeller with finite blade number in static and

low-speed flight. The interaction of the higher harmonics

with the steady loading is clarified and it is shown that, in

a rigorous sense, a high blade-number restriction is required.

For a shroud of small camber and zero thickness an analytic

solution is obtained, together with simple expressions for

shroud thrust and surface pressures, subject to a constant-

pitch aasumption on the trailing propeller vortices. To be

more precise, the pitch hypothesis is dropped and an alterna-

tive iterative solution pursued. The final results, however,

of an illustrative calculation indicate that the two solutions

do not differ significantly. Results of a limited comparison

with experiment are quite reasonable.
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PRINCIPAL NOMENCLATURE

c shroud chord

cp shroud surface pressure coefficient; see
Eq. (3.1)

c p net shroud surface pressure coefficient;
see Eq. (3.10)

C t,T  shroud and propeller thrust coefficients
respectively; see Eqs. (3.12), (3.14) and

(2.3), (2.4)

gn coefficients of Glauert series for steadyshroud vortex loading; see Eq. (2.13)

iXr x,r,e unit vectors respectively

[I.J infinite identity matrix

J local pitch of trailing propeller vortices

.1 values of j at the propeller plane and
infinity respectively

N propeller blade number

p static pressure

PCO static pressure at infinity

v



[P] three-dimensional "curvature" matrix

q total fluid velocity vector; see Eq. (1.2)

q n coefficients related to propeller-induced
camber; see Eq. (2.14)

Qn+h Legendre function of second kind and order(n+k)

rs  shroud radius taken locally

R shroud radius at propeller plane

R ppropeller blade radius

[S] Hough matrix; see Eq. (3.5)

t,T shroud and propeller thrusts respectively

u,v,w x,r,e disturbance velocities respectively;
see Eq. (1.2)

U flight speed

x,r,e propeller-fixed coordinates

CP £x/R and r/R respectively

'bound shroud vortex strength per unit axial
length
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r bound blade circulation distribution

Fr/PR
p

6 flight parameter; a - T/ T

Elocal inclination angle of camber line rela-
tive to x-axis; see Fig. 1.1

X c/2R

AO (,X) Heuman lambda function with argument and
modulus K

Rp /

p fluid mass density

l V..Legendre function arguments; see Eqs. (1.8),
(1.11), (2.11), (-3), (4..5) and (4.12) re-
spectively

Glauert variable; x =-Xcos

fangular rotational speed of propeller

( )(l), ... superscript denotes iteration number

( )0 subscript 0 denotes zeroth e-harmonic

vii



)v subscript v refers to vortex element

( )" prime denotes differentiation with respect
to the indicated argument

f ) infinite column vector

)T transposed vector

[ ] infinite square matrix

[ ] inverse matrix
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TEE DUCTED PROPELLER
IN STATIC AND LOW-SPEED FLIGHT

Introduction

In previous studies we have treated the ducted propeller

quite extensively for the case of forward flight at zero

incidence 1 4 . We now turn our attention to the case of static

and low-speed flight, and define the problem as follows: Given

the shroud geometry and operating conditions, determine the

resulting thrust and time-average surface pressures on the

shroud.

In general, study of the static and low-speed problem has

been confined to one-dimensional momentum analyses, except for

the work of A. R. Kriebel5'6 and H. R. Chaplin7 . Kriebel has

obtained an expression for the division of thrust between the

shroud and propeller, whereas Chaplin has developed a numeri-

cal program directed mainly at computing the slipstream con-

traction. In both analyses certain restrictions are imposed

a priori which limit physical insight into the complicated

interactions that arise in static and low-speed operation.

Although we will impose essentially the same restrictions ex-

cept for zero tip clearance, the nature of these interactions

will be clarified in the present development. More important,

1
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we will obtain convenient analytic formulas for the shroud

thrust and surface pressures.

Analogous to our treatment of the forward-flight condi-

tion, we consider first the camber problem, using a classical

three-dimensional vortex approach. That is, the shroud and

propeller are represented by a distribution of bound ring and

Lc line vortices respectively, together with their appropriate

trailing vortex systems. The effects of fluid viscosity and

compressibility are neglected as well as the presence of a

hub, guide vanes and support struts. Once the strength of the

bound shroud vortices is determined, the pressures and thrust

Las may be readily computed.

It is anticipated that the contents of this report will

be condensed and presented in a tabular format as a simple

addition to the procedure of Ref. 4



CHAPTER ONE

FOR ULATION

1.1 Problem Statement

We consider a ducted propeller in static or steady low-

speed flight U at constant rotational propeller speed 92

and zero incidence in an unbounded, inviscid, incompressible

fluid otherwise at rest. The term "low-speed" will be made

precise later in the analysis.

The shroud is taken to be infinitely thin and of small

camber. The N propeller blades are assumed to be infinitely

slender, and the hub radius is considered negligible.

In propeller-fixed coordinates x,r,8 the incoming free

stream has a uniform translation U in the positive x-direction

and a rotational component Or in the positive e-direction,

see Fig. 1.1 . The blades are at rest in this system but the

duct is rotating about the propeller axis with angular speed

. This rotation may, however, be set equal to zero without

altering the potential flow since the duct is axisymmetric.

The resulting flow field is time-independent but does retain

a e-dependence because of the finite blade number. Taking

the propeller blade loading as known, we seek to determine

the zeroth e-harmonic of the shroud loading.

3
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1.2 Boundary Conditions and Vortex Model

The flow field must necessarily satisfy the following

tangent-flow condition on the shroud,

tan = v(xr 5 1 e) (1.1)u+u(x,rs,e)

where e(x) and rs(x) denote the local inclination angle

and radius of the shroud respectively. The components of

the disturbance velocity induced by the propeller and duct

u,v,w are defined in terms of the total velocity q by

q E (U+u)i + vir + (nr+w)i (1.2)

where i , ir ,A are axial, radial, and circumferential

unit vectors respectively. With R defined as the duct

radius at the propeller plane, it follows from our assumption

of small camber that

tar 6 = O(E)

q(x,rSte) = q(x,R,e)[l +o(E)] (1.3)

In addition, the magnitude of U lies between zero for the

static case and 0(u,v,w) for low-speed flight. The linear-

ized form of the tangent-flow condition may therefore be

expressed simply as
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0 = v(x,R,e) (1.4)

To compute the disturbance flow, in particular the radial

Wash v(x,R,e) , we introduce a classical vortex model to

represent the shroud and propeller as in the forward-flight

case , see Fig. 1.1 . That is, the shroud is replaced by a

distribution of ring vortices of strength y(xvGv) per unit

axial length over the "mean" duct rv  R, - c/2 < x < c/2

where the v subscripts will be used in referring to vortex

elements. Conservation of vorticity requires that these bound

vortices be accompanied by trailing vortices of elemental

strength - y/aev . The propeller is represented by N

bound radial vortex spikes of strength F(rv) over the blade

radius, 0 < r < R , together with their assoc'ated trailing-v-p

vortices of strength - F'(rv) per unit radial length.

Throughout, the prime will denote differentiation with respect

to the indicated argument.

1.3 Evaluation of the Radial Wash

The radial wash v(x,R,e) contains e-harmonics of order

0, N, 2N, ... , each of which must satisfy Eq. (1.4). In

seeking the zeroth harmonic of *y(xvev) , say y0 (Xv) , let

us consider the zeroth harmonic of Eq. (1.4),

0 = Vo(X,R) (1.5)
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We may express v0  as the sum of four components: v ,

V v and v , which represent the contributions from

the bound and trailing shroud and propeller vortices re-

spectively. These components can be expressed in terms of

the unknown shroud loading y and the given blade loading

r by means of the Biot-Savart law.

This general procedure has been carried out in Chapter

Two of Ref. 1 . The components v YO and v may be found,

with slight changes in nomenclature, as the zeroth harmonics

of " -ir" and "q-ir" respectively. We find that

c/2

v-y(xR) =21-c/2 (X-Xv)Q (a,) -o(xv dx (1.6)

and

V r0(xR) = 0 (1.7)

where

- 1 + (X-Xv)
2/2R2  (1.8)

and Q is the Legendre function of second kind and one-

half order. The Legendre functions of second kind and general

half-integer order have been tabulated in Ref. 8

In computing v , we see from the harmonic nature of

the shroud trailing vortex system that
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V-X 1 R)= 0 (1.9)
0

In order to proceed with the evaluation of V., , it is
0

necessary to know the geometry of the trailing propeller vor-

tices. For any given blade this is determined by the tra-

jectories of the fluid particles which pass over the blade

and are convected downstream with the total local fluid

velocity q , given by Eq. (1.2). In the case of forward

flight, the perturbational terms are negligible compared to U

and SQr so that within the confines of linear theory the

trailing vortices were assumed to be regular helices with

pitch determined by U and Ptr . In low-speed flight we may

again neglect v and w . For w this is permissible because

it is still quite small compared to Or . For v the justi-

fication follows from the twofold action of the shroud: First,

by contributing an appreciable amount of thrust the shroud

effectively reduces the required propeller disk loading, and

hence the resulting slipstream contraction. Second and more

important, slipstream contraction is inhibited by the shroud

tangent-flow condition, particularly over the portion immedi-

ately downstream which, in fact, contributes most heavily to

v r on the shroud. These arguments are substantiated by
0 7

recent numerical results of H. R. Chaplin who computes ulti-

mate contraction ratios of only a few percent.

Although we neglect v and w , we may not neglect u
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which is of the same order as U for the low-speed flight

condition. The axial component actually varies both axially

and radially, resulting in deformed helices of non-constant

pitch. This causes considerable complication. For simpli-

city, we will disregard any axial variation and approximate

each trailing vortex as a regular helix of pitch j(r) . The

appropriateness of this important assumption will be examined

in some detail later and, for the present, we merely give the

following motivation: For a free propeller, u increases

monotonely from its value at the propeller plane to approxi-

mately twice that value in the ultimate wake, so that a con-

stant-pitch assumption would clearly be inappropriate in the

low-speed range. In the case of the ducted propeller, however,

the duct induces an axial component which varies in a comple-

mentary fashion; that is, it decays from its value at the

propeller plane to zero in the ultimate wake. As such it can

be expected to remove much of the axial variation in pitch so

that the pitch may, indeed, be sufficiently constant.

With these approximations, the appropriate expression

for v , on the shroud is given by Eq. (16) of Ref. 9, with
0o

suitable modification of nomenclature, as

R Q(a

v0(x,R)= 2 N f Q(2 V P-(rv) dr (1.10)
0 47r R(rv) v •
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where

-2  1 + [ (X-p)2 + (R-r )2 ]/2Rr (1.1)

and j is the local pitch, as yet ,undetermined.

1.4 The Resulting Integral Equation

Inserting Eqs. (1.6), (1.7), (1.9) and (1.10) into the

tangent-flow condition Eq. (1.5) results in the following

integral equation in non-dimensional form for yo ,

N f J( v() v

S, jf (-v)o (al) 70 (Rv) dRv (1.12)
-x

With 92R as our reference velocity instead of U , which

may be zero, we have non-dimensionalized according to

x = X/R

E-r/R

P - r Q (1.13)

and have introduced the geometric parameters



11

R /R

x ~C/2R (1.114.)

Comparing Eq. (1.12) with the corresponding forward-
2

flight equation, see Eqs. (1.4) and (1.5) of Ref. 2, we

observe a striking difference:

For a given duct of small geometric camber, the
function e(x) appears expl.citly and plays a
dominant part in the forward-flight equation,
but disappears completely from the equivalent
low-speed equation.

For practical purposes this offers a tremendous simpli-

fication since the solution will be independent of e(x)

and will depend only on discrete parameters.



CHAPTER TWO

SOLUTION OF THE INTEGRAL EQUATION

2.1 High Blade-Number Limitation

Despite the absence of the geometric camber, we point out

that if j is regarded as a known function then Eq. (1.12) is

of the same mathematical form as the forward-flight equation

which has already been inverted in closed form2 .

But how is j determined? We could, for example, take

j equal to its actual value at the propeller plane, say j3 .

Unfortunately, the latter depends in part upon a nd u , .

These velocities are functionals of y0 so that the integral

equation is nonlinear. Since they are functionals of the

higher harmonics ymN  as well, the integral equation is also

coupled with the higher harmonic integral equations. This

situation appears to be intractable.

Instead, suppose we take j equal to its actual value in

the ultimate wake, say j. . This value still depends upon Y-
whereas u7  tends to zero at infinity and is not involved.

The velocity w , is a complicated functional of the higher

harmonics ymN , but is independent of -0 so that the result-

ing integral equation is linear. However, the coupling re-

mains. It appears that the only hope of arriving at a tract-

able situation is in further assuming the blade number to be

12
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infinite, thus forcing , , and hence the coupling, to zero.

This restriction is imposed for the sake of mathematical

rigor; practically, we would expect the results to be quite

valid for blade numbers as low as 3 or 4 .

2.2 Determination of Pitch

To evaluate j0(F) we note that ur is identically

zero, and write

U+u,= + Up (2.1)

where upr is evaluated at x =

To deal with the UF"- term, we must specify the blade cir-

culation P(i) . As in the case of forward flight , we choose

a distribution such that the Betz displacement condition is

satisfied in the ultimate wake. For our case of high blade num-

ber the Betz condition requires a uniform jet velocity at x = w .

It follows that , in Eq. (2.1), and hence j , must be con-

stant. From Eq. (22) of Ref. 9 we have at x = ,

0 , >

ffr() < P (2.2)
27ri0j

and since both u", and JC, are to be independent of r in

the ultimate wake, we must have r(i) equal to a constant,
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say I . This means that all the trailing vorticity is concen-

trated on the slipstream surface r = p . The pertinent value

of up" to be used in Eq. (2.1) is therefore the value on the

slipstream. Unfortunately, this value is not available from

Eq. (2.2). Instead, we proceed by computing the propeller

thrust T in two different ways:

First define the propeller thrust coefficient,

C T/ p(92R )2 (72) (2.3)T

From the Kutta-Joukowski relation, consistent with our assump-

tion that w << Pr , we have

CT =I 2rN dr/ rPS2Rp = -Nfl (2.4)
0

On the other hand, momentum considerations lead to

CT = P +5r,)2- 2 (2.5)

where ur here denotes the value inside the jet at x = w ,

or CW22j according to Eqs. (2.2) and (2.4). The resulting

Eq. (2.5) may be solved explicitly for jo, and we find that

= [J + 4C;T + J (2.6)
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Using this result in Eq. (2.1), we find as we might suspect

that the appropriate value of u, on the slipstream must be

the average of the "inner" and "outer" values, CT4jo, .

It is convenient, at this point, to give precise defini-

tions of the so-called "high-" and "low-" speed flight condi-

tions. Roughly speaking, high-speed flight (also called "for-

ward flight" or "cruise") corresponds to large J and small

CT . In the limiting case we have from Eq. (2.6) that j -# J ,

and so a measure of our "closeness" to ideal forward flight is

the closeness of j /J to unity. Observing from Eq. (2.6)

that

j /, = 1 + cTAJ2  (2.7)

we have C,/4 T2 << 1 as our criterion. Analogously,

j. --f/2 in the low-speed limit, and

j1/( [C-/2) = 1 + J/ NC T  (2.8)

Our criterion for low-speed flight may therefore be stated as

J/I%6 << 1 . Both conditions may be given in terms of a

single "flight parameter" 6 = J/1CT , as

HIGH-SPEED: 1/462 << 1

LOW-SPEED: 6 << 1 (2.9)
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2.3 Solution of the Integral Equation

With T(f) constant and j(i) given by j. of Eq. (2.6),

the integral equation reduces to

cT _ x

with

a3 -+ [ )2 + (1-P))2 ]/2p (2.11)
3 p

In addition, we have dropped the zero subscript on since

we have forced the higher harmonics to zero.

Following Ref. 2, we introduce a new axial coordinate

such that

R 2 - ), co (2.12)

and seek a Glauert series solution of the form

co

-= g0 cot+ g sin nO (2.13)
n =l

If we express

co

Q (U3 ) -q 0 - Z q cos nO (2.14)

n=l
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for convenience, the solution is given in matrix form as

(g] = 00 [1-l[q) (2.15)

where (g) and (q) denote the infinite column vectors

go o
gl ql,

(g~(q) q2(2.16)

[IJ being the identity matrix, with unity for each element

on the main diagonal and zero for every other element, and

[P] the "curvature matrix" of Ref. 2, the elements of which

depend upon X and tend to zero in the two-dimensional limit

of X- 0

It has been shown2 that the Neumann expansion

[i-p] I  j + [P] + [p]2 + ... (2.17)

is valid for all finite values of X . The inverse matrix

has been evaluated3 accordingly for X = 0.25, 0.50, 0.75

and 1.0, and is reproduced here, except for X = 1.0, in



18

Tables 1.1-1.3 •

The qn(X 'Lx )'s have been evaluated numerically to

within +0.001 and are tabulated for n = 0, 1, 2, ... 12 ;

= 0.25, 0.375, 0.50, 0.625, 0.75 ; ii = 0.90, 0.94, 0.97,

1.0 ; and x p/c = 0.0, ±0.125, ±0.25, ±0.375, in Tables 2.1 -

2.5 • The "in-between" values, X = 0.375 and 0.625, were

included to retain a consistent degree of accuracy in inter-

polation, and the value p = 1.0 to facilitate interpolation

for cases of small tip clearance.

In summary then, the static and low-speed solution is

given by Eq. (2.13) together with Eq. (2.15) and Tables 1.1 -

2.5 , cf. the forward-flight solution2 .



CHAPTER THREE

SHROUD SURFACE PRESSURES AND THRUST

3.1 Shroud Surface Pressures

We define the shroud surface pressure coefficient, based

upon the propeller tip speed, as

p-p

cp _ O 2 (3.1)
p

where p and p. are the static pressures on the shroud and

at infinity respectively. From Bernoulli's equation we have

P-PC, = - P[(U+u) 2 - U2] (3.2)

since v 0 , and Eq. (3.1) becomes

Cp= - (2J+u5)U (3.3)

We call attention to the nonlinear term U2. For finite

blade number the higher harmonics of u would therefore con-

tribute to the zeroth pressure harmonic since terms of the

form cos 2 me = (h + cos 2me) and sin2 me = (h- cos 2me)

contain axisymmetric portions. This coupling with the higher

harmonics in the zeroth pressure harmonic would be in addition

19
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to the coupling of the governing integral equations, discussed

above in section 2.1, and once again emphasizes the need to

limit our attention to high blade numbers.

Now, on the shroud u is equal to the sum of . and

up' " By means of a careful limiting process it may be shown,

see Eq. (1.10) of Ref. 3, that

- I2 7 f-+ [Q*(UI) -Q-(cyl)] -(Tv) d v

(3 .4)

The first term on the right hand side represents the well-known

two-dimensional contribution, and the second term supplies the

effect of three-dimensionality. From Hough again, we may

express u conveniently as

CO

U (x,1 ) = + -cot- + Y sin nO +2 L,¢TrS]rg

n=l (3.5)

where the [s(>)] matrix is tabulated in Ref. 3 and repro-

duced here in Tables 3.1 -3.3 for X = 0.25, 0.50, and 0.75 •

The transpose [ ) vector is defined as

T = ( - cosO, - cos20, ... (3.6)

Turning to u., , we find, from Eq. (28) of Ref. 9,
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r''Tl P Q Q (a3 W- - A (3, 10 (3.7)

where Ao (B, ) is Heuman' s lambda function with argument 0

and modulus K defined as

Ssin -I C ic P X 4 3[ 21- 12] 2 )(+

(3.8)

This function was tabulated in Ref. 10, and a shorter

tabulation appears in Ref. 11 . For P and x in the range

of practical interest x is slightly less than or equal to

unity over the shroud, and the simple approximation

A 0(0,) = 0o(0,1) = 20/7r (3.9)

is sufficiently accurate.

With u computed as the sum of , and u., I from

Eqs. (3.5) and (3-7), the pressure coefficient on the shroud

is t hen given by Eq. (3.3). In addition we may compute the

net surface pressure coefficient, c - c (,l-) c (cR,l+)

as

c]-- 2j+ (O.)T[s](g)+ T P (C3 2

(3.10)

The first term -2J coincides with the corresponding
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forward-flight result, and the additional two terms represent

the nonlinear contributions. Physically, Eq. (3.10) expresses

the Kutta-Joukowski interaction between the axial velocity

and the bound shroud circulation.

3.2 Shroud Thrust

From Lagally's extension of the general Kutta-Joukowski

formula, the elemental thrust dt , positive upstream, on a

shroud ring vortex of strength v  is12

dt = - P(v,)(27rR ydxv) (3.11)

Defining the shroud thrust coefficient as

C St/ p(nRp )2 (7rR 2 ) (3.12)
t p

We find, with from the left side of Eq. (2.10), and

and Q from Eqs. (2.13) and (2.14) respectively, that

XS(7rj 133) (2 v

-X

XC/ fT~ g + 2q~gl - 3qlg 0 -qngl X qnl

n=l

(3.13)

If we express the q n's in terms of the gnIs by
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means of Eq. (2.15) and recall the properties of the [P1

matrix from section 2.2 of Ref. 2, we find that Ct reduces

to the single term
4.

Ct = 2 (3.14)

This we recognize immediately as the classical leading-edge

suction force. It is not unexpected, of course, since j is

independent of the geometric shroud camber in the present

theory. In other words, the shroud thrust is the same as if

the camber were identically zero, in which case the only

possible axial force is the leading-edge suction force. This

result was anticipated several years ago by A. H. Sacks, in a

private communication, based upon physical reasoning.



CHAPTER FOUR

INVESTIGATION OF CONSTANT-PITCH HYPOTHESIS

4.1 Pitch Iteration

To investigate the degree of validity of the constant-

pitch assumption, we will set up an iterative solution which,

in the limit, is expected to yield the exact pitcb distribu-

tion including the axial variation. At the same time, it should

also provide considerable physical insight into the problem.

If we take as our initial value j(0)= j0 , that is

a(0)= C4jw and -(0)= 0 , we find the resulting shroud

loading y(0) explicitly from Eq. (2.15). with this known,

we may compute a new pitch distribution according to

j x)=cr+ ~ (X,P.) + uW(C,P.) ,i(4.1)

where u1)(x,L) is taken as the average of the "inner" and

"outer" values as before. Integration of 5(0) over the shroud

yields, cf. Eq. (32) of Ref. 9

x

- ( ) = 1, f [ '((T - Q (GJ .(0) (X) d:R

where (4.2)

04 -1+ [(-v)2+ (1-t.) 2 ]/2L (4.3)

24
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The propeller-induced contribution may be found from Eq. (28)

of Ref. 9 • After averaging and changing nomenclature, we have

()_Cx-x,1
= _, ( + __j±Q) (4.4)

87rjci C a5

where

a l_+(:- ) 2 /21 2  (4.5)

If the right hand side of Eq. (4.2) is integrated numeri-

cally, then j(1)(i) is determined at any x location. In
the limit as R - w , ) 0 and ()- CT/ j so that

With the new trailing vortex geometry thus specified, the

next step is to compute the corresponding propeller-induced

radial wash v ( I ) on the shroud, and hence the new shroud vor-

tex loading ^((l) Carrying this out, we find the result is

equivalent to the integration over a semi-infinite cylinder of

ring vortices of strength per unit length NP/27rRpj(1)(Xv

C p x;,(11(X-1 = jl(v) Q (4 dxv  (4-6

Xp

For practical purposes we split the integration into two ranges:

the first from Rx to R , and the second from R to w . We

Pchoose X large enough so that jkl)( ) may be approximated
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by j. in the latter "tail" portion. The integration in

this portion may therefore be performed analytically, and

-(I 47- T f h Q( 11  d
F / f- (°(1)

Rp

5cT 2 + (1_012

QC 31 1 ii ++(l4-7

cf. the left hand side of Eq. (2.10) with T replaced by X

We may now determine 7(l) Recalling again the left

hand side of Eq. (2.10), or

0(o) -_ CT (4.8)

as well as Eqs. (2.14) and (2.15), we see that if we expand

47rj 0

q(1) cs nO (4.9)

ILT n=l

then 7y(1) is given by

g(1)) = 0T [I_p]-l(q(l)) (4.)

and the Glauer; series of Eq. (2.13) with g() instead ofint0do
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90 and so forth.

This process may be repeated. The only change necessary

is in the evaluation of Ur" . since the pitch is no longer

constant, Eq. (4.4) does not apply. For and all sub-

sequent iterates, we have the analogous form to Eq. (4.6)

for the radial component, namely

r' 4CTL 3z !Rv [Q'(a6)_ Q-"_ (c6)) d~cv

(4.11)where

6 + ( .- v) 2 (/42.2)

4.2 Illustrative Results

We have carried out the above process on the CDC 1604 at

the Cornell University Computing Center for the typical case

J =0

CT =0.1

X = 0.5

.= 0.9

= 0 (4.13)

which will be considered further in the next chaptar. Here we

are only concerned with the iteration. The static case was

chosen since it is the most critical; that is, the pitch hypothe-
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sis can be expected to be least accurate at the static condition

and to become more accurate as the flight speed is increased.

The results are shown for a two-step iteration in Fig. 4.1

We see immediately that the axial variation of and .

are quite "complementary", resulting in a reasonably constant

pitch distribution. We also see from a comparison of v -

and 40 that, qualitatively, the effect of the axial varia-

tion in pitch is to shift the "effective" propeller plane rear-

ward by approximately 2% of the chordlength.

In judging the validity of the constant-pitch assumption,

however, we are not concerned with the discrepancy between j (x)

and j. per se but rather with the resulting discrepancy in

the final quantities of interest, such as the shroud loading

and the shroud thrust Ct * Truncating the Glauert series at

n =12 , the coefficients of 7(0) and 5(1) are given by

0.1349 0.1365

0.0215 0.0348

0.0631 0.0623

-0.0001 -o.0o65

-0.0214 -0.0191

0.0000 0.0019

(g(0 = 0.0096 [g(1)) = 0.0078

0.0000 -0.0005

-0.0049 -0.0039

0.0000 0.0002

0.0026 0.0022

0.00(2 -0.0001

-0.0014 -0.0012 (4.14)
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and -(O) and are compared in Fig. 4.i . While the

relative differences in some of the coefficients are appreciable,

(0) agrees with (') quite closely. Furthermore, g(O)

and g differ by only 1% so that, according to Eq. (3.13),

c(0)t and C ( ) differ by only 2%



CHAPTER FIVE

NUMERICAL EXAMPLES

5.1 Input Data

Let us consider the static case J = 0 with the following

typical values for the parameters,

CT = 0.1

X =0.5

L=0.9

x /c = 0.0 , -0.25 (5.1)

where the first case, for x p/C = 0.0 , is identical to the

one considered above in Section 4.2 . The camber is assumed

to be small, but arbitrary, since it has no effect in the

present theory.

5.2 Results

In order to determine the shroud surface pressure coeffi-

cient and the shroud thrust, we first compute the vortex loading

5 . We find [g) from Eq. (2.15) and Tables 1.2 and 2.3 •

For xp/c = 0.0 the result is given by the first of Eqs. (4.14)

and is reproduced below for convenience, together with the

result for Xp/C = -0.25 ,

31



32

0.1349 0.1327

0.0215 -0.0499

0.o631 0.0312

-0.0001 0.0317

-0.0214 0.0087-o.0000 0o317

0.0000 -0.0069

= 0.0096 -0.0038

0.0000 0.0027

0.0026 o.ooo8

0.0000 -0.0009

-o.0o1 -0.0011 (5.2)

respectively. The corresponding 5's are computed from

Eq. (2.13) and plotted in Fig. 5.1 .

The inner and outer shroud surface pressures are then

calculated from Eqs. (3-3), (3-5), (3-6), (3-7), (3-8), (3-9)

and Table 3.2 , and the results are shown in Fig. 5.2 . Two

striking features of these curves are apparent: first, the

outer surface pressure distribution is virtually independent of

the propeller position and, second, the inner surface pressure

coefficient decays to zero almost immediately downstream of

the propeller plane. This lack of "communication", expressed

by the first result, is not unexpected, on physical grounds.

Regarding the second result, we find that on the inner surface

u. and T are additive upstream of the propeller plane,

whereas they oppose each other downstream of it.
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Consequently, it is natural to wonder whether, for practi-

cal purposes, we may replace the two parameters X and xp

by the single parameter (Rp +X) ; that is, the nondimensional

distance from the leading edge to the propeller plane. The

results of sample calculations, however, are found to differ

significantly so that the above simplification is not valid.

Finally, from Eq. (3.13), the shroud-to-propeller thrust

ratio obtained for the two cases of Eqs. (4.13) and (5.1) are

0.683 , x /c = -0.25Ct/CT=

0.706 , x p/c = 0.0 (5.3)

The closeness of these two results seems to support Kriebel's

a priori assumption5'6 that Ct/CT is independent of x p/c .

But we emphasize that this is not the case, even in an approxi-

mate sense, for the detailed shroud surface-pressure distribu-

tion, see Fig. 5.2

5.3 Comparison with Experiment

Although the present theory is incomplete in the sense

that the effects of shroud thickness are not yet incorporated,

it is nevertheless of interest to compare it with experiment.

In the absence of suitable detailed surface pressure measure-

ments, we are limited to only a gross comparison based upon the

shroud thrust. If we use the inner shroud radius at the pro-
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o.6 --

0.4

x P/C = 0.0

0.2

0.0

-0.5 O.C +0.5

x/c

FIGURE 5.1

CHORDWISE VARIATION OF Y

J = 0, CT = 0.1, x = 0.5, j = 0.9
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CHORDWISE VARIATION OF C
p

J =0, CT = 0.1, X = 0.5, p. = 0.9
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peller plane, comparison with the results of K. J. Grunwald

and K. W. Goodson13 where J = 0 , X = 0.620 , x p/C = -0.146

and 4 = 0.995 , gives a predicted value of Ct which is

about 30% lower than their measured value. Since ct  is a

second-order quantity, though, the corresponding error in the

shroud circulation is only half as great; i. e. about 15%

which is qaite reasonable.



CONCLUSIONS

A theory has been developed for the steady aerodynamic

loading on a ducted propeller with finite blade number in

static and low-speed flight. For a shroud of small camber

and zero thickness, we have shown that:

The effect of the geometric camber is of higher order
and may be neglected.

The steady shroud circulation is coupled nonlinearly
with the higher harmonics through the pitch of the pro-
peller wake. This coupling imposes, in a rigorous
sense, a high blade-number restriction.

An analytic solution together with simple expressions
for the surface pressures and shroud thrust can be
obtained, subject to a reasonable assumption of constant
pitch for the trailing propeller vortices.

The pitch hypothesis may be dropped and an iterative
solution pursued, but an illustrative calculation -.ndicates
that the corresponding final results do not differ
significantly.

The outer shroud surface pressure is quite insensitive
to the axial propeller position, and the inner shroud
surface pressure decays almost to zero immediately
behind the propeller plane.

Results of a limited comparison with experiment are
quite reasonable.

It is anticipated that the contents of this report will

be condensed and presented in a tabular format as a simple

addition to the procedure of Ref. 4i.

37
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xp/c = 0.0 xp /c = ±0.125

0.90 0.94 0.97 1.00 0.90 0.94 0.97 1.00

0 1.744 1.913 2.044 2.178 1.735 1.907 2.042 2.180

1 0 0 0 0 ±0.293 ±0.363 ±0.422 ±0.484

2 0.440 0.603 0.769 0.982 0.383 0.523 0.667 0.858

3 0 0 0 0 +0.128 T0.213 TO.313 T0.457

4 -0.104 -0.192 -0.309 -0.499 -0.059 -0.104 -0.163 -0.265

5 0 0 0 0 ±0.049 ±0.110 ±0.205 ±0.381

6 0.032 0.080 o.162 0.333 0.005 0.008 O.Oll o.o18

7 0 0 0 0 TO.017 0.051 T0.118 T0.280

8 -0.011 -0.037 -0.096 -0.250 0.003 0.013 0.039 0.109

9 0 0 0 0 ±0.005 ±0.020 ±0.057 ±0.169 T

10 0.004 0.019 0.060 0.200 -0.003 -0.013 -0.047 -0.163

11 0 0 0 0 0.001 0.005 T0.017 o.o64 ±

12 -0.002 -0.010 -0.040 -0.167 0.001 0.009 0.037 0.166 -

TABLE 2.1

qn COEFFICIENTS FO
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x/c = ±0.25 x p/c = ±0.375

0.9o 0.94 0.97 1.00 0.90 o.94 0.97 1.00

1.705 1.887 2.033 2.185 1.639 1.832 2.003 2.193

±0.557 ±0.703 ±0.831 ±o.968 ±0.746 ±o.969 ±1.190 ±1.454

0.229 0.296 0.371 0.485 0.031 -0.017 -0.076 -0.137

+0.177 To.293 To.439 To.665 O.117 To.169 +o.235 To.373

0.028 0.072 0.139 0.250 0.063 0.131 0.242 0.484

+0.032 ±o.o6o ±0.105 ±0.200 o.o14 To.054 T0.140 To.356

-0.023 -0.065 -0.146 -0.333 -o.oo6 O.OO1 0.031 0.122

±0.002 ±0.016 ±0.051 ±0.143 ±0,007 ±0,019 ±0.037 ±0.097

o.oo6 0.o18 0.045 0.125 -0.004 -0.017 -0,057 -0.219

o.oo4 ¥0.019 0.064 T0.222 0.000 ±o.oo8 ±o.o42 ±0.217

0.000 0.004 0.023 0.100 0.001 0.000 -0.015 -0.117

±0.001 ±0.006 10.022 ±0.091 +0.001 TO.003 ;0.007 T0.017

-0.001 -0.006 -0.032 -0.167 0.000 0.003 0.017 0.122

2.1

FOR X = 0.25



I I
x /c 0.0 x /C = 10.125

0.90 o.94 0.97 1.00 0.90 0.94 0.97 1.00

0 1.484 1.605 1.698 1.792 1.48o 1.6o4 1.699 1.795

1 0 0 0 0 *0.335 ±0.386 ±0.427 ±0.469

2 0.554 0.691 0.817 0.965 0.479 0.598 0.709 0.842

3 0 0 0 0 T0.194 T0.274 +0.354 +0.455

4 -0.172 -0.262 -0.361 -0.498 -0.094 -0.139 -0.191 -0.264

5 0 0 0 0 ±o.096 ±0.166 o.251 ±0.380

6 0.068 0.128 0.206 0.333 0.007 0.009 0.012 0.018

7 0 0 0 0 0.042 T0.o89 ¥0.157 T0.280

8 -0.030 -0.070 -0.132 -0.250 0.010 0.028 0.055 0.109

90 0 0 0 ±0.016 ±o.o4o ±o.o8i ±0.169

10 o.o14 o.o41 0.090 0.200 -0.010 -0.031 -0.071 -0.163

11 0 0 0 0 T0.oo4 o.012 T0.027 To.o64

12 -0.007 -0.025 -0.064 -0.167 0.006 0.023 o.o61 o.166

TABLE

qn COEFFICIENTS
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x pc = ±0.25 xp/C = ±0-375

0.90 0.94 0.97 1.00 0.90 0.94 0.97 1.00

1.462 1.595 1.698 1.804 1.411 1.561 1.687 1.819

±o.645 ±0.756 ±0.846 10.939 ±o.882 ±1.o68 ±1.233 ±1.413

0.268 0.329 0.390 0.471 -o.o18 -o.o65 -O.lO9 -o.147

+0.266 $0.38o TO.501 To.662 Zo.156 TO.2o6 iO.267 To.371

0.062 0.112 0.170 0.250 0.115 0.195 0.302 0.483

-0 .054 ±0.086 ±0.128 ±o.199 +0.044 o.102 T0.192 $0.356

-0.055 -0.111 -0.191 -0.333 -0.001 0.017 0.052 0.122

±0.012 ±0.035 ±0.073 ±0.143 ±0.016 ±0.029 ±0.048 ±0.097

0.015 0.033 0.062 0.125 -0.013 -0.038 -0.087 -0.219

+0.015 0.0143 +0.097 T0.222 ±0.005 ±0.024 ±0.072 ±0.217

0.003 0.013 0.038 o.10 0.000 -0.006 -0.031 -0.117

±0.005 ±0.014 ±0.034 ±0.091 $0.002 TO.006 TO.009 TO.017

-0.004 -0.018 -0.055 -o.167 0.002 0.009 0.031 0.122

LE 2.2

TS FOR X = 0.375



i

x /c =0.0 X IC = ±0.125

0.90 o.94 0.97 1.00 0.90 o.94 0.97 1.00

0 1,286 1.381 1.454 1.527 1.285 1.382 1.456 1.531

1 0 0 0 0 ±0.348 ±0.388 ±0.4?0 ±0.452

2 0.614 0.730 0.831 0.945 0.529 0.631 0.720 0.823

3 0 0 0 0 T0.238 Z0.309 ¥0.374 T0.453

4 -0.222 -0.306 -0.389 -0.496 -o.118 -0.161 -0.205 -0.263

5 0 0 0 0 ±0.134 ±0.203 ±0.278 ±0.380

6 0.!00 0.162 0.232 0.332 0.008 0.010 0.013 0.018

7 0 0 0 0 ¥0.067 o.i18 To.181 T0.280

8 -0.051 -o.o96 -0.154 -0.250 0.019 0.039 0.066 o.109

9 0 0 0 0 10.028 ±0.056 ±0.097 ±0.169

10 0.027 0.060 0.110 0.200 -0.020 -0.047 -0.088 -o.163

ii 0 0 0 0 o.oo8 TO.017 T0.033 T0.o64

12 -0.015 -0.040 -o.o81 -o.167 o.o14 0.037 0.079 o.166

TABLE

qn COEFFICIENTS



46

x /c = ±0.25 x/c = *0.375

0.90 o.94 0.97 1.00 0.90 o.94 0.97 1.00

1.277 1.382 1.463 1.545 1.244 1.366 1.465 1.568

±0.677 ±0.766 ±0.835 ±0.906 ±0.944 ±1.100 ±1.230 ±1.367

0.287 0.341 0.393 0.45r -0.056 -0.097 -0.130 -0.157

T0.328 T0.432 T0.533 To.658 T0.181 T0.229 T0.284 ¥0.367

0.091 0.139 0.188 0.250 0.158 0.241 0.338 0.483

±0.071 ±0.104 ±0.142 ±0.199 T0.074 To.140 T0.224 ¥0.356

-0.085 -0.145 -0.219 -0.333 0.007 0.031 0.066 0.122

±0.024 ±0.051 ±0.086 ±0.143 ±0.023 ±0.037 10.056 ±0.097

0.024 0.044 0.073 0.125 -0.025 -0.057 -0.109 -0.219

+0.028 o.o64 T0.119 T0.222 ±0.014 ±0.042 ±0.095 ±0.217

0.008 0.023 0.049 O.lOO -0.002 -0.015 -0.045 -0.117

±o.009 ±0.022 ±0.044 ±o.o91 0.004 o.007 .O010 O.017

-0.011 -0.032 -0.073 -0.167 0.005 0.017 0.043 0.122

LE 2.3

ITS FOR X = 0.50



x/c 0.0 x /c ±0.125

0.90 o.94 0.97 1.00 0.90 o.94 0.97 1.00

0 1.130 1.209 1.269 1.330 1,131 1.212 1.273 1.336

1 0 0 0 0 10.347 ±0.381 ±0.407 ±0.433

2 0.645 0.745 0.829 0.923 0.555 0.643 0.719 0.802

3 0 0 0 0 +0.268 ¥0.330 ¥0.386 T0.449

4 -0.258 -0.334 -0.406 -0.494 -0.136 -0.176 -0.214 -0.261

5 0 0 0 0 ±0.164 ±0.230 ±0.295 ±0.379

6 0.127 0.186 0.248 0.332 0.009 0.011 0.014 0.018

7 0 0 0 0 +0.088 To.14o ¥0.197 T0.279

8 -0.069 -0.116 -0.170 -0.249 0.027 0.048 0.073 0.109

9 0 0 0 0 ±0.039 ±0.070 ±0.108 ±0.169

10 0.040 0.076 0.123 0.200 -0.031 -0.060 -0.099 -0.163

11 0 0 0 0 T0.012 T0.022 T0.038 T0.o64

12 -0.025 -0.053 -0.094 -0.166 0.023 0.050 0.091 0.166

TABLE

nCOEFFICIENTS I
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x /c = ±0.25 x p/C = 0.375

0.90 0.94 0.97 1.00 0.90 0.94 0.97 1.O0

1.132 1.219 1.286 1.354 1.114 1.218 1.300 1.384

±0.683 ±0.756 ±0.813 ±0.871 ±0.966 ±1.099 ±1.207 ±1.319

0.295 0.344 0.388 0.440 -0.086 -0.120 -o.146 -0.167

¥0.371 T0.465 ¥0.551 T0.653 ¥0.197 O.244 T0.293 T0.363

0.112 0.157 0.199 0.250 0.193 0.274 0.361 0.482

±0.065 ±0.117 ±0.151 ±0.198 70.102 ¥0.169 +0.246 ¥0.356

-0.110 -0.171 -0.238 -0.332 0.017 0.043 0.076 0.123

±0.035 ±0.063 10.096 ±0.143 ±0.029 E0.043 ±0.062 ±0.097

0.032 0.054 o.o81 0.125 -0.038 -0.073 -0.124 -0.219

o.o43 T0.o82 T0.135 ¥0.222 ±0.024 ±0.058 ±0.112 ±0.217

0.013 0.031 0.057 0.100 -o.oG6 -0.024 -0.055 -0.117

±o.o14 ±0.029 ±0.050 ±0.09± +O.006 To008 +O.010 ¥o.017

-0.018 -0.044 -0.086 -o.167 0.009 0.024 0.053 0.122

E 2.4

S FOR x = 0.625



xpiC = 0.0 Xp/C = ±0.125

0.90 o.94 0.97 1.00 0.90 o.94 0.97 1.00

0 1.003 1.072 1.123 1.175 1.007 1.077 1.129 1.183

1 0 0 0 0 ±0.340 ±0.369 ±0.392 ±o.414

2 0.659 0.747 0.820 C.899 0.567 0.645 0.710 0.781

3 0 0 0 0 +0.288 ¥0.343 ¥0.391 T0.445

4 -0.284 -0.354 -0.417 -0.491 -0.149 -0.186 -0.219 -0.260

5 0 0 0 0 ±0.188 ±0.248 ±0.306 ±0.378

6 0.148 0.2C4 0.260 0.331 0.010 0.012 0.014 0.018

7 0 0 0 0 ¥o.lo6 TO.156 +0.209 T0.279

8 -0.086 -0.131 -0.181 -0.249 0.035 0.055 0.078 0.109

9 0 0 0 0 ±0.050 ±0.081 ±0.117 ±0.169

10 0.053 0.090 0.134 0.200 -0.041 -0.071 -0.108 -0.163

11 0 0 0 0 0.015 T0.027 T0.o41 T0.o64

12 -0.034 -0.064 -0.103 -0.166 0.032 0.061 o.1o o.165

TABLE

qn COEFFICIENTS
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xp/c = 0.25 x pC = ±0.375

0.90 0.94 0.97 1.00 0.90o0. 0.97 1

1.015 1.090 1.147 1.205 1.011 1.101 1.171 1.242

±0.673 ±0.737 ±0.786 ±0.835 ±0.967 ±1.083 ±1.175 ±1.270

0.297 0.341 0.380 0.424 -0.109 -0.138 -0.158 -0.175

To.4o1 To.485 ¥0.560 0.647 ¥0.209 T0.253 T0.298 ¥0.358

0.129 0.170 0.207 0.250 0.222 0.299 0.377 0.480

±0.396 ±0.126 ±0.157 ±0.197 T0.126 +0.191 T0.261 $0.356

-0.132 -0.190 -0.251 -0.332 0.026 0.053 0.083 0.123

±0.045 ±0.073 ±0.102 ±0.143 10.034 ±0.048 ±0.066 ±0.097

0.040 0.061 0.087 0.125 -0.049 -0.087 -0.136 -0.219

T.o056 $0.097 To.146 T0.222 ±0.035 ±0.072 ±0.125 ±0.217

0.019 0.038 0.062 0.100 -0.011 -0.031 -0.062 -0.117

±0.019 ±0.034 ±0.055 ±0.091 +0.007 +0.009 T0.011 T0.017

-0.026 -0.055 -0.096 -0.166 0.014 0.031 0.060 0.122

,E 2.5

TS FOR X = C.75
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